Indian Statistical Institute, Bangalore

B. Math (Hons.) Second Year

Second Semester - Ordinary Differential Equations

Mid-Semester Exam Maximum Marks: 30 Date: February 19, 2025 Duration: 2 hours

[5]

Answer all questions

(1) Let φ, ψ, χ be real-valued continuous functions on a interval $I : a \leq t \leq b$. Let $\chi(t) > 0$ for all $t \in I$, and suppose for $t \in I$ that

$$\varphi(t) \le \psi(t) + \int_{a}^{t} \chi(s)\varphi(s)ds$$

Prove that

$$\varphi(t) \le \psi(t) + \int_{a}^{t} \chi(s)\varphi(s) \exp\left(\int_{s}^{t} \chi(u)du\right) ds$$

for $t \in I$.

(2) (a) Consider the equation y' + ay = b(x), where a is a constant and b(x) is a continuous function on an interval I. If x_0 is apoint in I and c is any constant, the function defined by

$$\varphi(x) = e^{-ax} \int_{x_0}^x e^{at} b(t) dt + c e^{-ax}$$

is a solution of this equation and every solutions are of this form. [2]

- (b) Solve the system of equations $\frac{dx}{dt} = -4x y$ and $\frac{dy}{dt} = x 2y$. [3]
- (3) (a) Let y_1 and y_2 be any two solutions of y'' + P(x)y' + Q(x)y = 0 and W be the Wronskian. Then show that $W = ce^{-\int P(x)dx}$ for some constant c. [3]
 - (b) Suppose that φ_1 and φ_2 are linearly independent solutions of the second order linear differential equation with constant coefficients

$$y'' + a_1y' + a_2y = 0$$

and W be the Wronskian. Show that W is constant if and only if $a_1 = 0$. [2]

- (4) (a) Consider the IVP y' = 2sin(3xy), $y(0) = y_0$. Show that it has unique solution in $(-\infty, \infty)$. [3]
 - (b) Find the solution of the IVP

$$y' = 2x(1+y), \quad y(0) = 0$$

using Picard's iterations (successive approximations) $y_0(x), y_1(x), y_2(x), \ldots$ and show that it is unique around a region containing (0, 0). [2] (5) Find a function v such that y_1 and $y_2 = vy_1$ are linearly independent solutions of

$$y'' + P(x)y' + Q(x)y = 0.$$

- [5]
- (6) (a) Define regular singular point of the equation y'' + P(x)y' + Q(x)y = 0. [1] (b) Define the Bessel function $J_p(x)$ of first kind of order $p (\geq 0)$. Show that Sh

(i) $\frac{d}{dx}(x^p J_p(x)) = x^p J_{p-1}(x).$ (ii) $J_{-p}(x) = (-1)^p J_p(x)$ for p positive integer.

[4]

Good luck!!